Lead-free Processing Compatible with Halogen-free Required EM-285/ EM-285B

Outline

- 1. Compression of Basic Material Property
- 2. Related PCB Processing Evaluation
- 3. Reliability Test
- 4. Conclusion

General property

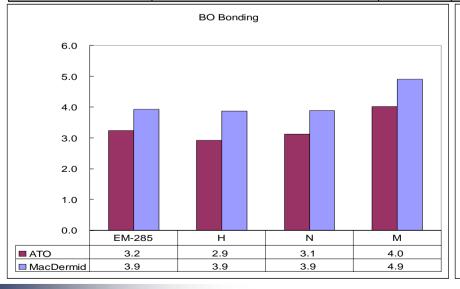
Thickness: 1.0mm

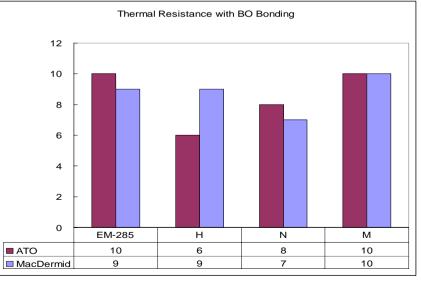
Item	Condition	Unit	EM-285	Н	N	M
Tg	TMA		152	152	154	156
T288(unclad)	TMA	Min	> 60	> 60	> 60	> 60
T288(clad)	TMA	Min	8	<1	3.5	3.5
Td (5% loss)	TGA		364	338	349	334
1	TMA(50~120)	ppm/	49	56	44	30
2	TMA(180~260)	ppm/	201	220	235	202
CTE	TMA(50~260)	%	2.3	2.9	2.9	2.2
Dk	1 MHz	-	4.8	4.8	4.8	4.9
DK	1 GHz	-	4.7	4.7	4.6	4.8
Df	1 MHz	10E-3	0.007	0.007	0.010	0.010
וט	1 GHz	10E-3	0.009	0.009	0.016	0.012

Peel strength vs. thermal stress

Thickness: 1.0mm 1/1

Item	Condition	Unit	EM-285	Н	N	M
Peel	As received	lb/in	8.1~8.4	8.7~8.9	8.9~9.0	9.7~9.8
strength (1oz)	After thermal stress	lb/in	8.0~8.3	8.4~8.8	8.8~9.1	9.4~9.5
Thermal stress	Solder dip 288 x 10s	cycle	17~20	7~9	9~11	6-8

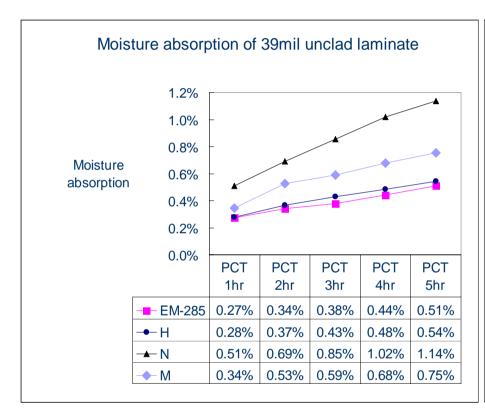


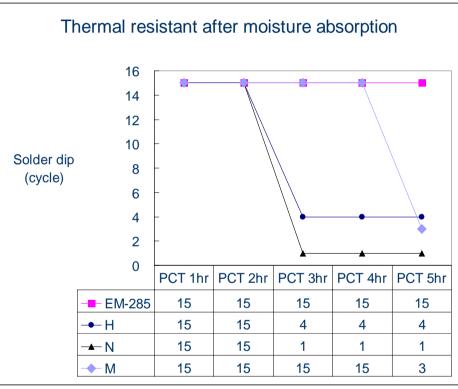


BO bonding vs. thermal stress

Construction: $1oz + 7628 \times 5 + 1oz$

Chemical	Condition	Unit	EM-285	Н	N	M
АТО	As received		3.0~3.4	2.8~3.1	3.0~3.4	3.8~4.3
AIO	After thermal stress	lb/in	3.9~4.0	3.6~4.1	3.7~4.0	4.8~5.0
MaaDawaid	As received	ID/III	3.1~3.4	2.8~3.1	2.8~3.1	3.7~3.9
MacDermid	After thermal stress		3.6~4.1	3.5~3.8	3.7~4.0	4.6~5.0
Thermal	ATO Bond Film	ovele	8~10	5~6	5~8	9~11
stress cycle	MacDermid	cycle	8~9	8~10	7~9	10~11




BO bonding vs. thermal stress

MtI	EM-285	Н	N	М
АТО				
Cycle	10	6	8	10
P/S	3.2	2.9	3.1	4.0
Mtl	EM-285	Н	N	М
		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN THE PERSON NAMED		
Mac Dermid				
	9	9	7	10

Moisture absorbed & thermal resistance

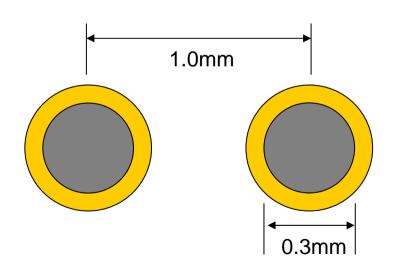
PCB Processing Evaluation

Drilling Processing

Method

Layer Count: 4 Layers

Thickness: 1.6mm


Drilling Hole Size: 0.3mm

Wall to wall: 0.7mm

7628

0.039",1/1

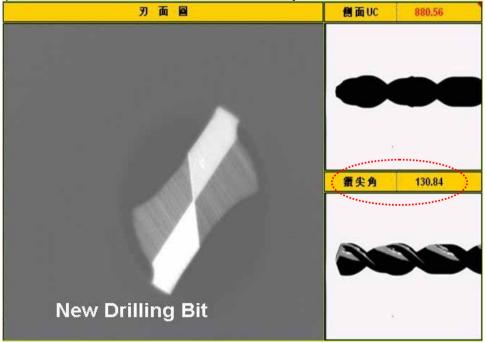
7628

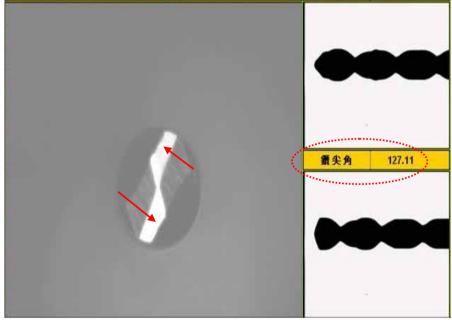
PCB Processing Evaluation

Drilling Processing

Material	Speed (krpm)	Chip load (mil/rev)	Hit
Regular FR-4	150	0.7	2500
N Company	150	0.7	2500
H Company	150	0.7	2500
EM-285	150	0.7	2500

- 1. Machine: Tong-Tai 160krpm
- 2. Taiwan Union 0.3 mm UC drilling bit
- 3. 0.2 mm thickness of entry, 1.5 mm thickness of urethane clad
- 4. Stack-up: 2 PNLs of stack height (Total 3.2 mm)

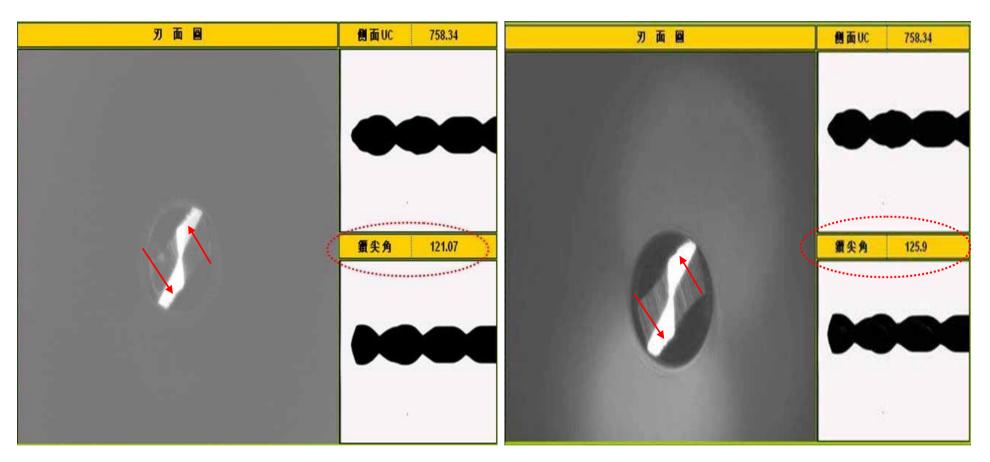



Reducing Drilling Bit Abrasion Study

Thickness 1.6mm,
Diameter 0.3mm,
Speed 150krpm,
Chip load 0.7 mil/rev, 2500 Hit

刃 面 圖

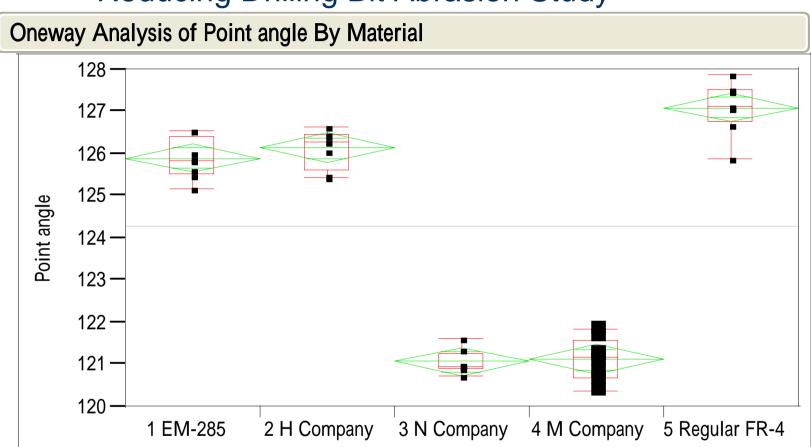
側面UC


755.56

Point Angle of New Drilling Bit: 130 degree

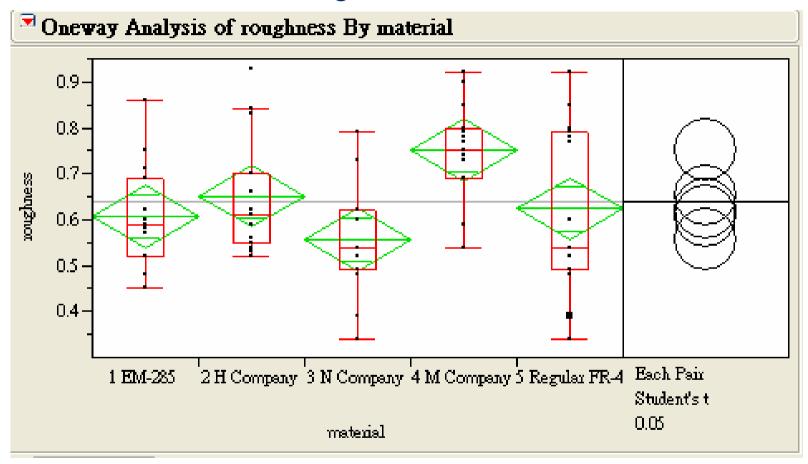
Regular FR-4 Material: 127 degree

Reducing Drilling Bit Abrasion Study



N Company: 121 degree

EM-285 : 126 degree

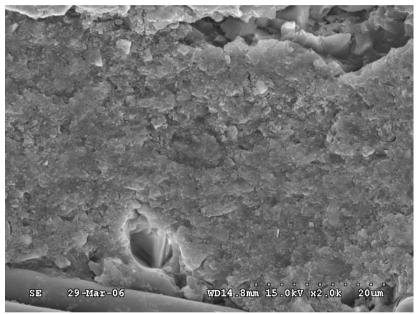

Reducing Drilling Bit Abrasion Study

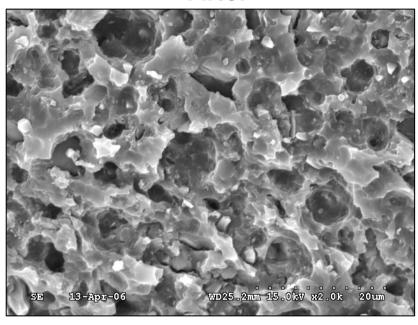
Drilling bit abrasion ratio of EM-285 is improved 80% above than N company material

Roughness of hole wall

Performance of hole wall roughness between regular FR-4 material and EM-285 is similar

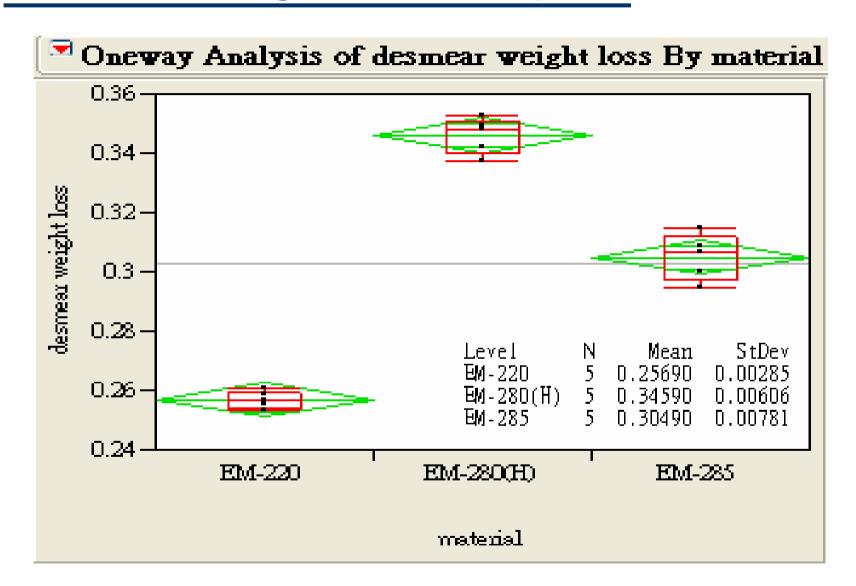
Nail-head of hole wall


Performance of nail-head between regular FR-4 material and EM-285 is similar


PCB Processing Evaluation

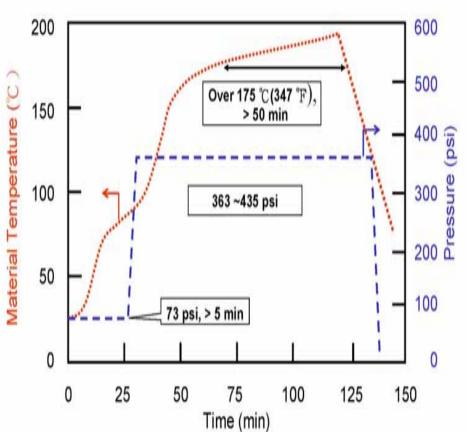
Desmear weight loss

After


Weight loss control at 0.20 ~ 0.40 mg / cm²

Sweller temperature: 60 / time 5 minutes

Desmear temperature: 80 / time 9 minutes


Desmear weight loss comparison

PCB Processing Parameter Suggestion

Press cycle

Kiss pressure: 3.5~7 kgf / cm²

Heat rate: 1.8 ~ 3.0 / min

Full pressure: 25 ~ 30 kgf / cm²

Apply Full pressure at: 85 ~ 100

Curing condition: >175 / 50 min

(Minimum peak temperature in curing condition: 195)

*The heating rate higher will be better for peeling strength and inner layer pattern filling, while the lower will be better for press flow. Please contact us for setting suitable press cycle if necessary.

PCB Processing Parameter Suggestion

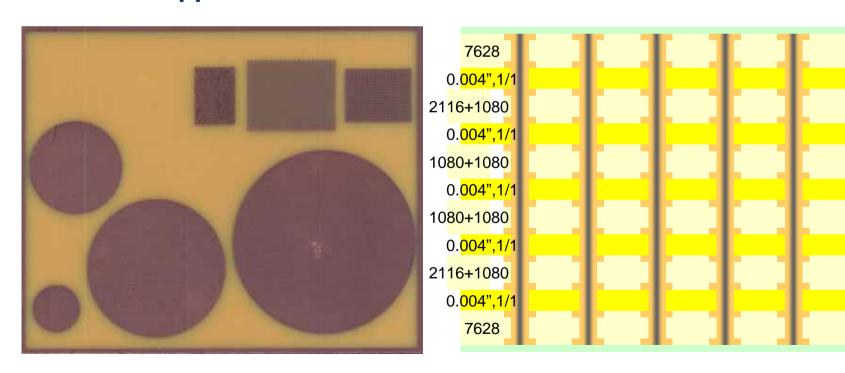
Pro	cess		Condition			
Surface Clean		Std. Practice				
A.	O.I.	5	Std. Practice			
Oxide t	reatment	Std.	Black or Brow	wn		
Oxide	e Bake	1	20 40 min			
Hole diameter (mm)		0.3	0.4	0.5		
Spindle Speed (Krpm)		150	120	100		
In Feed (inch / min)		120	102	90		
Chip Load	l (mil / rev)	0.8	0.85	0.9		
Number of Hits		1500	1500	1500		
Sweller (Uyemura)	Vertical	60 for 5 min.				
KMnO ₄ (Uyemura)	Vertical	80 for 9 min.				

Additional Suggestion during Processing

For improving material moisture absorbed in processing, post-baked treated would be suggested as several processing:

- 1. Finished board before packing
 - 1-1 HASL: 150 degree C for 4 hours
 - 1-2 ENIG finished: 120 degree C for 4 hours
 - 1-3 Before OSP: 150 degree C for 4 hours
- Solder mask re-work or WIP over 2 weeks150 degree C for 4 hours

Test Pattern & Construction

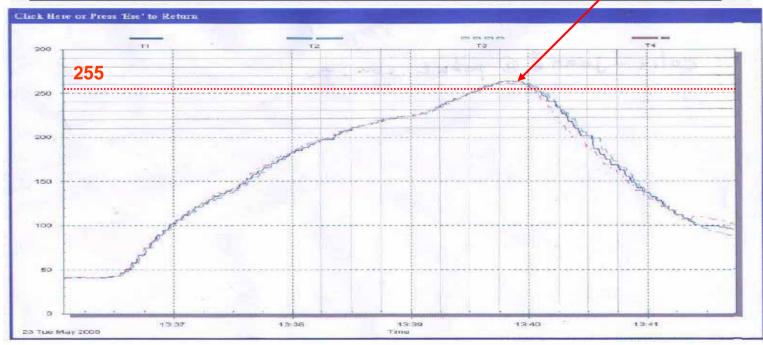

Thickness: 2.0mm

Layer Count: 12

Hole Diameter: 0.3mm

Wall to wall: 0.3 / 0.45 / 0.7mm

Ground Copper Diameter: 0.5/ 1.0/ 1.5/ 2.0 inch


IR Reflow Condition

IR Reflow溫度設定値(單位:℃)

設定値	第1段	第2段	第3段	第4段	第5段
上爐溫	250	230	260	250	320
下爐溫	250	230	260	250	320

IR Reflow溫度實測值

項目	IPC/JEDEC J-STD-020C	實測值
預熱段時間(150~200℃)	60~180sec	63
平均昇溫速率(200~260℃)	<3℃/sec	0.65
>217℃時間	60~150sec	112
高溫段時間(255~260℃)	20~40sec	. 29
最高溫度	260℃	262
降溫速率(260~140℃)	<6°C/sec	/3.43
昇溫時間(25~260℃)	<8分	4.5

Copper Ground with IR Reflow

N = 12

Item	Condition	Pattern	unit	EM-285	Н	N	M
		0.5"		>10	7~8	8~9	>10
	As	1.0"		>10	6~8	7~9	>10
	received	1.5"		>10	5~7	7~8	>10
Copper		2.0"	ovolo	>10	4~7	6~8	>10
ground	85 , 85% RH, 40hr treated	0.5"	cycle	>10	6~7	5~8	>10
		1.0"		>10	5~8	6~7	>10
		1.5"		>10	6~7	5~6	>10
		2.0"		> 10	5~7	4~6	>10

Thermal resistance with ground copper area improved in EM-285

Hole Wall Crack after IR Reflow

N = 45

Material	Wall to wall	Delam	ination Ra	tio (%)
Material	(mm)	3 cycles	6 cycles	9 cycles
	0.30	13	41	87
EM-285	0.45	0	35	77
	0.70	0	0	13
	0.30	21	51	93
н	0.45	0	48	86
	0.70	0	9	21
	0.30	56	83	100
N	0.45	33	78	93
	0.70	7	26	37
	0.30	47	73	100
M	0.45	22	60	91
	0.70	4	18	27

EM-285 Can Pass the wall to wall 0.45mm by 3 Cycles and 0.70mm by 6 Cycles of Lead-Free IR Reflow

Micro-sectioning of hole wall with IR reflow 6 cycles

Wall to wall (mm)	EM-285	н	N	M
0.7				
0.45				

Conclusion

EM-285 Advantage

- Better Thermal Resistance (Lead-Free Requirement)
- 2. Better Capability to Reduce the Drilling Bit Abrasion

3. Better Electrical Performance in High Frequency Application (Low Df)

